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Abstract

There are many different types of online networks, one of which is multi-agent systems. A
multi-agent system or network consists of multiple decision-making agents which interact in some
environment to achieve a certain goal. Agents or nodes may be collaborative or antagonistic in
achieving their goals. In distributed optimization of multi-agent systems, nodes cooperate to
minimize a global function which is a sum of agents’ local objective functions. Each agent has a
connection or edge with some or all other agents. These systems occur in settings such as client-
server architecture, machine learning, power systems, and smart manufacturing. Metaheuristic
algorithms such as distributed stochastic gradient descent (D-SGD) and consensus-based opti-
mization (CBO) are commonly used in distributed optimization in order to optimize the global
function. However, some networks may have irregularities that affect performance: 1) stragglers,
in which nodes inconsistently optimize the local function due to subpar computation power, and
2) faltering edges, where agents or nodes may have issues communicating due to device or net-
work compatibility. We term these communication deficiencies and study them in various convex
and non-convex multivariable benchmark function settings. We conclude that the two algorithms
perform equally for benchmark functions in the non-convex setting. However, in all other set-
tings, including the convex setting and all settings incorporating both types of communication

deficiencies, CBO outperforms D-SGD.

1 Introduction

There are many different types of online networks, one of which is multi-agent systems. A
multi-agent system consists of multiple decision-making agents which interact in some environment
to achieve a certain goal. Agents may be collaborative or antagonistic in achieving their goals. In
distributed optimization of multi-agent systems, agents collaboratively minimize a global function
which is the sum of their local objective functions, subject to some constraints such as the communi-
cation network itself, which governs which agents may communicate with one another. Distributed
optimization increases the speed of the network as it allows for parallel computing, with numerous
agents optimizing the function at the same time [1]. With the advancement of machine learning and
cloud computing, as well as other applications such as smart manufacturing, big data, and power
systems, distributed optimization has become more crucial than ever [1, 2]|. In this work, we focus
on a specific issue within distributed optimization of multi-agent systems.
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One of the most significant factors harming the performance of distributed optimization networks
is communication deficiencies, which we will be focusing on in this paper. Due to the heterogeneous
nature of distributed optimization, agents may have different hardware and characteristics, leading
to varying local computation powers [3|. As a result, some machines may have weaker computation
power than others. They can become stragglers and slow the network, which can lead to numerous
issues including delayed communication with its neighbors and resource inefficiencies [3]. The second
type of communication deficiency we will be focusing on is related to the edges themselves—the
communication links from each node or agent to its neighbor. These links can be prone to failing
or faltering in real-world situations due to reasons such as network outages and agent compatibility
issues [3]. As a result of these two types of communication deficiencies, network performance may
decrease substantially.

Communication deficiencies in distributed optimization have been examined in a variety of
contexts. One example is machine learning. Distributed optimization lends concepts to federated
learning, a distributed machine learning network in which the local objective functions are the cost
functions in machine learning [4]. In federated learning, the use of a distributed optimization net-
work overcomes the challenges of data privacy while also training a central machine learning model.
However, federated learning also encounters communication deficiencies such as stragglers, due to the
same concepts: lack of local computation power, or the incompatibility of data due to heterogeneity,
as different agents may have differing subsets of data. One solution to this problem exists: simply
identifying the stragglers, then dropping them entirely, excluding them from contributing to the net-
work [5]. However, this solution still produces issues since the straggler’s model update is lost and the
straggler’s data effectively no longer contributes to the global model. There are currently numerous
asynchronous algorithms being developed in federated learning in order to combat stragglers [6].

Another example is electric power systems. Previously, Alkhraijah et al. examined the impact of
intermittent communication failure on distributed optimization networks by creating a chance of edge
failure model. They also compared the performance of several algorithms under those conditions,
including the alternating direction method of multipliers (ADMM), Analytical Target Cascading
(ATC), and Auxiliary Problem Principle (APP) algorithms in the context of electric power systems
and optimal power flow algorithms [7]. However, this intermittent communication failure only ex-
amined the faltering of edges due to compatibility, rather than the straggler case.

Our gap in the current literature is the lack of research surrounding the consequences of com-
munication deficiencies stragglers and faltering edges in distributed optimization. Therefore, the
primary goal of this paper is to study them in detail. We will be examining three commonly-used
metaheuristic algorithms—a general class of optimization techniques that seek an optimal, or near-
optimal, solution to a problem, but that cannot guarantee that the solution they find will be optimal.
These include decentralized stochastic gradient descent (D-SGD) and consensus-based optimization
(CBO). Both D-SGD and CBO are burgeoning optimization algorithms that enable numerous agents
or nodes to work on tasks without the need for a central server. In D-SGD, each node keeps a copy
of the local objective function and communicates with other nodes to exchange gradient steps and
ultimately average each node’s gradient step [8]. In CBO, agents interleave local gradient descent
steps with consensus iterations to attempt to reach the global minimum [9]. Gradient steps drive
the solution to a global minimum, while the consensus iterations synchronize the values so that all

github.com/thann3 /DO Deficiencies 2



Deficiencies in Distributed Networks May 2024

nodes come to a consensus on the final solution [9]. By combining these metaheuristic algorithms
with rigorous benchmark functions, we will be able to determine the extent to which communication
deficiencies such as stragglers and faltering edges have on the network.

Therefore, our research question is: To what extent do communication deficiencies such as
stragglers and faltering edges affect the network performance of optimization algorithms on 2D, 4D,
and 8D benchmark functions?

2 Methods

We choose a simulation-based method a theoretical method since we are examining the effect
of communication deficiencies on a network’s accuracy. Moreover, a simulation-based method allows
for parameter exploration and reproducibility in future work. We will be simulating using Python
code.

We test two metaheuristic optimization algorithms (D-SGD and CBO) on convex and non-
convex 2D, 4D, and 8D benchmark objective functions, which will constitute six benchmark functions
in total. In terms of communication, for the sake of simplicity, we test only fully interconnected
networks of 100 nodes, all with learning rate a = 0.01 and the number of epochs or rounds at 10,000.
Thus, the weights between nodes will all be set to 1, and each node has equal sway over its neighbors.
To simulate the communication deficiencies, we set the chances of stragglers and faltering edges from
0% to 100%. For the sake of simplicity, each node has the same chance of a communication deficiency
occurring.

2.1 An Overview of Gradient Descent

The basic objective of a distributed optimization network is to minimize the global function
which is the sum of the local objective functions. Suppose we have some network configuration G,
in which every node may be connected to every other node, or some edges may be missing. This
network G € {N, E'} contains N nodes and E edges. We denote (6;,6;) as the edge between node
6; and node 6;, where all edges are bi-directional. We define a system state as {6;};, € N;, and we
seek to find a system state that reaches consensus 0; = 0;VN;, where j € N; which minimizes the
global function which is the weighted (hence the w; in Equation (1), depicted below) sum of the local
objective functions.

N
0% € argmin » w; f(6;)
; (1)

s.t.91:92:...:9N

In Equation (1), #* is the optimal solution, and we attempt to converge all other final 6 values
to that 6* value. This optimal state can easily be found in a centralized manner by solving Equation
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(1); however, we seek to understand the performance of decentralized, local optimization algorithms.

To adequately understand the algorithms we will be using throughout this paper, we first need
to examine the basic algorithm gradient descent. Gradient descent is a standard practice in the field
of optimization, so it is crucial to understand its inner workings. It is used to minimize an objective
function f(#) parameterized by a model’s parameters § € R, by updating the parameters in the
opposite direction of the gradient of the objective function V f(#) with reference to the parameters.
The learning rate «, as the name implies, determines the rate that which the node "learns" the
function, and also determines the size of the steps it takes to reach a local minimum. In other words,
the node follows the direction of the slope of the surface created by the local objective function
downhill until it reaches a valley and hits a local minimum point [10]. Each node in a network
performs gradient descent in order to minimize some objective function in an attempt to reach the
global minimum. The formula for the standard gradient descent algorithm is below. In order to
assist the reader’s understanding of the algorithm, Figure 1 is depicted below Equation 2 [11]. The
gradient descent algorithm attempts to converge to the global minimum.

ol = gl — oV f(o1V) (2)

' 'l' '4'-: ;a‘p.*-’.-r“?'g 0
O w‘ = ge g.
‘«"lllﬁ””% R

¢
- ’””’ :*t'-:i’:m

‘-

Figure 1: Gradient Descent
Source: [11]

2.2 Metaheuristic Optimization Algorithms

In this section, we familiarize ourselves with the two popular optimization algorithms that we
will be using throughout the course of this paper. We will also utilize gradient clipping, in which if
the gradient exceeds a certain threshold, we clip the gradient to minimize the step size.
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2.2.1 Decentralized Stochastic Gradient Descent (D-SGD)

Decentralized Stochastic Gradient Descent is a form of the original gradient descent algorithm
in which the algorithm is more stochastic, or random, and frequently checks the optimization of the
function, making it faster and more preferable to traditional gradient descent |9, 12]. D-SGD, as
the name implies, is simply the decentralized version of SGD, where all agents perform stochastic
gradient descent and exchange their resulting gradients with each other, removing the need for a
central model [12|. As each node exchanges its gradient V f(#) with its neighbors, it compiles the
resulting gradient by weighing all of the gradients (w;;) that it receives over the neighbors that it
has (including its own gradient), depending on the edges of the communication network. The set of
N; neighbors for node 6; is denoted as N;, where the cardinality is denoted as |N;|. The notation
w;; refers to the weight exerted on node 6; by node 6;, which can depend on the communication
network. For example, the weight might be higher if node 6; is receiving a gradient from its neighbor
¢; which has more neighbors itself than node 6;. This is known as the mixing step. After that
gradient is calculated, it takes the gradient step by multiplying the gradient against the learning rate
a. Equation (3), shown below, may provide some clarity.

(1) _ o) 1 o)) (t)
o) — o) _ o x |M-|+1<vf +]€ZNwZNf 0;7)) (3)

2.2.2 Consensus-based Optimization (CBO)

Consensus-based optimization averages are based on the node’s state or position instead of the
gradients. In other words, in comparison to D-SGD, the mixing step in CBO does not calculate
the weighted average of its neighbors’ gradients, but the weighted average of its neighbors’ positions
along with its own [9]. After computing, the node takes a standard stochastic gradient descent step,
multiplied by its learning rate. Equation (4), depicted below, may provide some clarity.

(t+3) t
0. 2 ;
i ,N,Jrl Zw”

9(t+1) _ 9§t+5 B &Vf(ei 5))

]

(4)

2.3 Additional Methods

In this section, we outline some methods, or add-ons to the algorithm that we will be using in
this paper.

2.3.1 Neighborhood Radius

Neighborhood radius limits the number of nodes that a node communicates with. This radius
is the Euclidean Distance between nodes, essentially the straight-line path between two nodes. This
is useful because nodes’ information is more relevant if they are located closer to each other. The
neighborhood radius is typically 10%-30% of the input space, and we’ll set it to 30% in this experiment
because we are studying communication settings.
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Figure 2: Neighborhood Radius
Source: [13]

2.3.2 Gradient Clipping
We will also be using gradient clipping, which limits the size of the gradient for each round.
This is important because, without it, gradients can overshoot, as shown here. Gradient clipping is
necessary for large-value functions that can cause algorithms to overshoot the minima, so we will

only be using it for one benchmark function which will be discussed in the next section.
With clipping

Without clipping

J(w,b)

J(w,b)

N\—

Figure 3: Gradient Clipping
Source: [14]
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2.4 Benchmark Functions

We examine communication deficiencies in two types of optimization functions: convex and non-
convex functions. Convex, unimodal functions have a unique global minimum, making optimization
much easier, as one does not have to worry about becoming “trapped” at local minima.

On the other hand, non-convex functions can have multiple minima (multimodal), one of which
is the optimal global minimum; hence, optimization is more challenging in this setting. Therefore, it
is important to examine both types of optimization functions in multiple dimensions to simulate the
challenges of optimization in any given setting. The more complex the setting, the more number of
dimensions are required. The input space will depend on the space typically used for each benchmark
function.

2.4.1 2D Functions

Two-dimensional input (2D) benchmark functions have the benefit of being graphed since they
are in a 3D space, with the z plane representing the output of the function. As such, we will present
the graphs of the convex and the non-convex benchmark functions, but this will not be true in
later sections since it is impossible to accurately depict a high-dimensionality space (4 dimensions or
higher). Instead, we will present the 3D space of those graphs purely for visualization purposes.

There are some criteria that must be met for our benchmark functions, both convex and non-
convex. For the convex function, it must be unimodal and have only one minimum, the global
minimum. There should be no local minima.

Therefore, for the convex function, we choose the Rosenbrock Valley Function, which is a com-
monly used function in optimization [15, 16]. The global minimum lies at z* = (1,...,1), and the
function value at global minimum is f(z*) = 0. The input space tested is z* € [—5, 10] for however
many input dimensions are tested. It is considered trivial to find the valley; however, it is difficult to
find the global minimum within the valley. We will use gradient clipping on both algorithms for this
function to prevent overshooting due to the rapidly ascending large values, and also the neighborhood
radius.

Similarly, there are also criteria that must be met for the non-convex function. We desire the
function to have numerous local minima and one global minimum in order to challenge the optimiza-
tion algorithm.

For the non-convex function, we select the Ackley function, another widely used function in the
field of optimization. This function has numerous local minima and one global minimum, making
it non-convex and difficult to correctly optimize [17]. The global minimum occurs at z* = (0, ...,0),
where f(z*) = 0. The input space tested is x* € [—5,5] for however many input dimensions are
tested. Both functions are written below as Equations (5) and (6), respectively, and depicted in
Figure 3 and Figure 4 for the reader’s reference.
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Convex:
d—1

F(e) = 2 000((ains = )+ (= 1 (5)
where d = 2

Non-convex:

f(z,y) = =20 x exp | —0.2

d
1
—exp | - Z cos(2mz;) | +20+e
i=1

where d = 2
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f(x, y)

[40000
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Figure 4: Rosenbrock Valley Function Figure 5: Ackley Function

2.4.2 4D Functions

The convex 4D function we choose will be the Rosenbrock Valley function, which is a commonly
used unimodal, convex test function [15]. We set the dimensionality to 4 for this test case. As for
the non-convex 4D function, we retain the same criteria of having numerous local minima and one
global minimum in order to challenge the optimization algorithm. Since the Ackley function can be
tuned to higher dimensions, it will suffice for the 4D non-convex function.

2.4.3 8D Functions

Since the criteria for the non-convex and convex functions have been fulfilled previously in the
4D function section and the previous 4D functions are scalable to higher dimensions, we choose to
continue with the sum of squares for the convex function and the Ackley function for the non-convex
function, only while changing the dimensions to 8, setting d = 8 in the equations.
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3 Results
3.1 Ackley 3D Results

We will first study some cases of 2D input spaces on the non-convex Ackley function in or-
der to understand how the two algorithms (D-SGD and CBO) are performing with and without
communication deficiencies.

3.1.1 Base Cases

We present the base cases of both optimization algorithms with no communication deficiencies
introduced. D-SGD (Figure 6) is on the left, below, and CBO (Figure 7) is on the right.

ru -

F 1o [ 12

F 10 [ 10

Figure 6: D-SGD, 100 nodes Figure 7: CBO, 100 nodes

These are the base cases with no communication deficiencies, with the trajectories of the nodes
plotted on the xy plane. CBO is on the left, where we see rapid, smooth convergence to the global
minimum, indicating that the nodes had no issue getting over the local minima because they were
interacting with others and averaging the positions.

On the other hand, the right side is D-SGD, which has a “snaking” convergence to the minimum
but also performs very well, although it doesn’t completely reach the global minimum. Neither
algorithm has a substantial issue with becoming trapped at local minima due to the collaborative
nature of their network steps.

3.1.2 Stragglers, 50%
Here, in figures 8 and 9, we present one type of communication deficiency: stragglers, at 50%.

In other words, for each round of the 10,000 rounds, about half of the 100 nodes will be stragglers.

Now we introduce some deficiencies. Interestingly enough, neither algorithm is impacted much
by the 50% straggler deficiency. This is possibly due to the stragglers not affecting the system as
much because there are 100 nodes populated in a small, [-5, 5| space. If there is a 50% straggler
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Figure 8: D-SGD, 100 nodes Figure 9: CBO, 100 nodes

issue, then there still remain 50 nodes, which allows the algorithm a great amount of flexibility.

Therefore, we choose to examine another case in the same setting, but this time with 10 nodes.
As depicted below in Figure 10 and Figure 11, we can clearly see that both algorithms are clearly
negatively affected by the stragglers. Due to neighborhood radius and stragglers, they lack nodes to
interact with, and thus get trapped at local minima.

Figure 10: D-SGD, 10 nodes Figure 11: CBO, 10 nodes

As depicted in Figures 10 and 11, due to the low node count, we can see that both algorithms
are clearly negatively affected by the stragglers. Due to neighborhood radius and stragglers, they
lack nodes to interact with, and thus get trapped at local minima.

3.1.3 Faltering Edges, 50%

Now, we will examine the other type of communication deficiency, faltering edges. As depicted
in Figures 12 and 13 below, CBO has slightly more difficulty with faltering edges, as not all nodes
converge to the minimum, and some become stuck in the local minima. However, overall, it still
performs superior to that of D-SGD. It is clear that D-SGD suffers from the communication deficiency
heavily, as nearly all nodes become trapped in local minima.

github.com/thann3 /DO _Deficiencies 10



Deficiencies in Distributed Networks May 2024

Figure 12: D-SGD, 100 nodes Figure 13: CBO, 100 nodes

Similar to the previous section, we will examine how the algorithms perform with 10 nodes
instead of 100 nodes. As shown below in Figures 14 and 15, both D-SGD and CBO struggle with
fewer nodes in the input space.

Figure 14: D-SGD, 10 nodes Figure 15: CBO, 10 nodes

3.1.4 Stragglers, 100%

At 100% deficiency, stragglers cause the network to not run at all, so there is no use depicting
the results there. Instead, we will examine the results of faltering edges at 100%.

3.1.5 Faltering Edges, 100%

By setting the faltering edges to 100%, this is essentially what the networks look like without
communication at all, and exclusively using stochastic gradient descent.

github.com/thann3 /DO _Deficiencies 11



Deficiencies in Distributed Networks May 2024

| i - . |
"14 l 7 ; r 1
y P -
L v i
i N
! L 0, N

Figure 16: D-SGD, 100 nodes Figure 17: CBO, 100 nodes

4 Main Results

Now we’ll move onto the comprehensive results, where we test the chance of faltering from 0%
to 100% using L2 norms, which are the Euclidean distance between the global minimum and the
final average value of the network. This is the straight-line distance between the two points, and so
the higher the L2 norm, the worse the network performance. The further right the point, the higher
the communication deficiency. The source code is provided on Github in the left side of the footer
for the reader’s convenience.

4.1 Ackley Results: Stragglers
4.1.1 2D

We see that, in a 2D input space, affected by stragglers, In the 2D input space,the performance
of both CBO and D-SGD declines.

10 10

L2 Norms
L2 Norms

T T T T T T T T
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
Chance of Straggler Chance of Straggler

Figure 18: D-SGD, 100 nodes Figure 19: CBO, 100 nodes
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4.1.2 4D

The efficacies for both algorithms are about the same throughout for 4D input spaces. However,
once again CBO is not heavily affected by communication deficiencies, whereas D-SGD clearly suffers
from a lack of communication.

10 10

8 B—NN
w 67 w 6
= £
= 2
-4 4 - 4

2 2

0 T T T T 0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Chance of Falter Chance of Falter
Figure 20: D-SGD, 100 nodes Figure 21: CBO, 100 nodes
4.1.3 8D

In the 8D input space, the L2 norms are already too high and constant for stragglers to affect
these algorithms, since it is incredibly difficult to optimize in higher dimensions with the Ackley
function, which is multimodal. Since these nodes are not moving anywhere in the first place due to
being trapped at local minima, the stragglers do not affect them.

10 10

8+ 8
w 67 w 6
£ £
= z
- 4 - 44

2 2

0 T T T T 0 T T T T

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

Chance of Straggler Chance of Straggler
Figure 22: D-SGD, 100 nodes Figure 23: CBO, 100 nodes
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4.2 Ackley Results: Faltering Edges

In this section, we interpret the effects of faltering edges on the two optimization algorithms in
the non-convex Ackley function.
4.2.1 2D

We see that, in a 2D space, CBO performs much better than D-SGD. CBO isn’t heavily affected
by the faltering edges communication deficiency, and the network is only negatively affected with
very high amounts of faltering edges, that being from 80% and onwards.

10 10

84 8
w 67 w 6
= £
= 2
3, 3,

2 2

0 T T T T 0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Chance of Falter Chance of Falter
Figure 24: D-SGD, 100 nodes Figure 25: CBO, 100 nodes
4.2.2 4D

Looking at 4D results in Figures 26 and 27, the efficacies are about the same throughout. D-SGD
is affected, as the L2 norm increases with more faltering edges. However, CBO is not significantly
affected by the higher amounts of faltering edges; it is consistent regardless of the amount.

10 10

8 H*/——\/——/\’/
w 67 w 6
: :
= 2
- 4 - 44

2 2

0 T T T T 0 T T T T

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

Chance of Falter Chance of Falter
Figure 26: D-SGD, 100 nodes Figure 27: CBO, 100 nodes
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4.2.3 8D

Looking at 8D results, the efficacies are about the same throughout. However, once again CBO
is not affected by faltering edges.

10 10

8+ 8
w 67 w 6
s :
= z
- 4 - 44

24 2

0 T T T T 0 T T T T

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

Chance of Falter Chance of Falter
Figure 28: D-SGD, 100 nodes Figure 29: CBO, 100 nodes

4.3 Rosenbrock Results: Stragglers

Note that D-SGD performs significantly worse for the Rosenbrock function, so much so that
y-axis of the D-SGD graph on the right is scaled to 200,000 for the y axis. This could be due to
the high values of the Rosenbrock valley and the sharing of gradients confusing the algorithm on the
direction toward the minima. In comparison, the CBO is at nearly zero.

4.3.1 2D

10

aaaaaa

L2 Norms

uuuuu

T T T T
0.0 0.2 0.4 0.6 0.8 10
Chance of Straggler

Figure 30: D-SGD, 100 nodes Figure 31: CBO, 100 nodes
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4.3.2 4D

The same trend in the 2D space is seen in the 4D space. Once again, note that the y-axis of the
D-SGD graph on the right is scaled to 200,000 in order to accommodate the extremely large values
of the L2 norms.
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125000 A
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10

0

Chance of Straggler Chance of Straggler
Figure 32: D-SGD, 100 nodes Figure 33: CBO, 100 nodes
4.3.3 8D

The trend continues in the 8D space.
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
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Chance of Straggler Chance of Straggler
Figure 34: D-SGD, 100 nodes Figure 35: CBO, 100 nodes

4.4 Rosenbrock Results: Faltering Edges
4.4.1 2D

As shown below in Figures 36 and 37, even with the change of the type of communication
deficiency, D-SGD still performs badly for the Rosenbrock function, whereas CBO performs well.
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One interesting detail to examine is that D-SGD on the Rosenbrock function performs the opposite of
what one would expect: with more faltering edges and a higher chance of communication deficiencies,
it actually begins to perform better on the Rosenbrock function. This signifies that D-SGD is more
effective as SGD, and that communication could be interfering with the algorithm.
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0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0

Chance of Falter

Figure 36: D-SGD, 100 nodes

4.4.2 4D

The same trend continues in the 4D input space.

T T T T
0.2 0.4 0.6 0.8
Chance of Falter

Figure 37: CBO, 100 nodes
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Figure 38: D-SGD, 100 nodes

4.4.3 8D

The same trend continues in the 8D input space.
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Figure 40: D-SGD, 100 nodes Figure 41: CBO, 100 nodes

5 Discussion

Ultimately, CBO generally outperforms D-SGD for the Rosenbrock function, even though the
Rosenbrock function is considered easy to optimize. This could be due to the large number of nodes
in a small input space, which allows the CBO algorithm an advantage since position-based averaging
aids the network in converging to the center, which is coincidentally the global minimum in this case.
Another reason is that CBO helps nodes achieve more decisive action, whereas D-SGD can cause
"rubber-banding" gradients where the nodes take steps that negate each other, adding up to no
progress made. With large gradients due to the rapidly ascending values of the Rosenbrock function,
the D-SGD algorithm performs poorly, even with the incorporation of gradient clipping. Instead,
incorporating normal SGD without the network seems to rectify the issue. This is shown in all of the
figures in Section 4.4, where more faltering edge communication deficiencies lead to less communi-
cation between nodes, which lead to lower L2 norms as the nodes just optimize on the SGD algorithm.

However, CBO and D-SGD perform about equally on the Ackley function at base value, but
CBO performs better with communication deficiencies, as it manages to avoid being “trapped” at
local minima using its position-averaging algorithm.

Overall, CBO outperforms D-GSD by a significant amount in multivariable, convex and non-
convex benchmark function settings. Communication deficiencies such as stragglers and faltering
edges negatively imapct the optimization of these algorithms to a significant degree in non-convex
benchmark functions, but in convex benchmark functions, they have a varied impact. D-SGD does
not optimize well in the base case, and the straggler communication deficiency causes the L2 norm
to skyrocket, whereas the faltering edges communication deficiency paradoxically causes the L2
norm to dip. On the other hand, CBO remains almost completely unaffected by the communication
deficiencies, except for the setting where the stragglers are very high, since that prevents the algorithm
from optimizing in the end.
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6 Conclusion and Future Work

This work contributes to the field of distributed optimization and distributed systems, allowing
researchers to better understand the consequences of communication deficiencies in these systems.
By improving the comprehension of researchers, this work can help inform researchers of which main
issues to tackle when developing new algorithms to combat communication deficiencies that occur in
distributed optimization.

Future work could consist of analyzing when an algorithm is interrupted mid-step while calcu-
lating the gradient steps. It could also analyze other algorithms such as the Alternating Direction of
Multipliers Method (ADMM), and the ADAM optimizer, a popular machine learning technique that
utilizes adaptive learning rates. More examples of multivariable convex and non-convex optimization
benchmark functions could be used in order to ensure the rigor of this study.
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